Topic 9-Variation of parameters

Derivation of Variation of parameters formula
Suppose we have

$$y'' + a_1(x)y' + a_2(x) = b(x)$$

Where $a_1(x), a_2(x), b(x)$ are continuous
on some interval I .
We want to find a particular solution
 y_0 to the above equation on I .
Suppose we have two linearly
independent solutions y_1 and y_2
independent solutions y_1 and y_2 solve
That is, assume y_1 and y_2 solve
 $y'' + a_1(x)y' + a_2(x) = O$
on I .
There is a theorem that says that this
will imply that the Wronskian
 $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix} = y_1y_2' - y_2y_1'$
will be non-zero on I .

Let $y_p = V_1 y_1 + V_2 y_2$ Where V, and Vz are unknown functions to be determined. We hope to find V, and Vz that make yp a particular solution to $y'' + \alpha_1(x)y' + \alpha_0(x)y = b(x)$. Note that this implies that $y'_{P} = V_{1}'y_{1} + V_{1}y_{1}' + V_{2}'y_{2} + V_{2}y_{2}'$ $= (V_{1}Y_{1}' + V_{2}Y_{2}') + (V_{1}'Y_{1} + V_{2}'Y_{2})$ We will now require that Viyit Vzyz=0 to simplify uvr calculations. Even though this may seen restrictive, it actually ends up working. Then, $y_{p} = V_{1}y_{1}' + V_{2}y_{2}'$ and

$$\begin{aligned} y_{p}'' &= V_{1}'y_{1}' + V_{1}y_{1}'' + V_{2}'y_{2}' + V_{2}y_{2}'' \\ \text{Plugging this into } y_{1}'' + a_{1}(x)y_{1}' + a_{0}(x)y_{2} = b(x) \\ \text{We will need} \\ (V_{1}'y_{1}' + V_{1}y_{1}'' + V_{2}'y_{2}' + V_{2}y_{2}'') + a_{1}(x)(V_{1}y_{1}' + V_{2}y_{2}') \\ &+ a_{0}(x)(V_{1}y_{1} + V_{2}y_{2}) = b(x) \end{aligned}$$

Which becomes

$$V_{1}(y_{1}''+a_{1}(x)y_{1}'+a_{0}(x)y_{1})+V_{2}(y_{2}''+a_{1}(x)y_{2}'+a_{0}(x)y_{2})$$

 $+ V_{1}'y_{1}'+V_{2}'y_{2}'' = b(x)$
So we will need $V_{1}'y_{1}'+V_{2}'y_{2}'' = b(x)$.
So we have two equations to solve:
Thus we have two equations to solve:
 $V_{1}'y_{1}+V_{2}'y_{2}=0$
 $V_{1}'y_{1}'+V_{2}'y_{2}'' = b(x)$
 $V_{1}'y_{1}''+V_{2}'y_{2}'' = b(x)$
 $V_{1}'y_{1}''+V_{2}'y_{2}'' = b(x)$

To solve the above system, calculate

$$y'_{1} * (D - y_{1} * (Z)) + v_{2} get$$

 $(v'_{1}y_{1}y'_{1} + v'_{2}y_{2}y'_{1}) - (v'_{1}y'_{1}y_{1} + v'_{2}y'_{2}y_{1})$
 $= -y_{1}b(x)$

This gives

$$v_{2}'(y_{2}y_{1}' - y_{2}'y_{1}) = -y_{1} \cdot b(x)$$

 $-w(y_{1},y_{2}) = -(y_{1}y_{2}' - y_{1}'y_{2})$

So,

$$v_2' = \frac{y_1 \cdot b(x)}{W(y_1, y_2)}$$

Similarly,
$$y'_{2} * (i) - y_{2} * (z)$$
 would give
 $(v'_{1}y_{1}y'_{2} + v'_{2}y_{2}y'_{2}) - (v'_{1}y'_{1}y_{2} + v'_{2}y'_{2}y_{2})$
 $= -y_{2} \cdot b(x)$

Thus,

$$V_{1}'(y_{1}y_{2}' - y_{1}'y_{2}) = -y_{2} \cdot b(x)$$

 $W(y_{1}, y_{2})$

So,

$$V_{1}' = \frac{-Y_{2} \cdot b(x)}{W(y_{1})y_{2}}$$
Thus,

$$V_{1} = \int \frac{-Y_{2} \cdot b(x)}{W(y_{1})y_{2}} dx \quad \text{and} \quad V_{2} = \int \frac{Y_{1} \cdot b(x)}{W(y_{1})y_{2}} dx$$

and

$$y_{e} = V_{1} Y_{1} + V_{2} Y_{2}$$

Summary
Let
$$a_{1}(x), a_{0}(x), b(x)$$
 be continuous on I.
Let $y_{1}y_{2}$ be linearly independent
solutions to the homogeneous equation
 $y'' + a_{1}(x)y' + a_{0}(x)y = 0.$
Then a particular solution to
 $y'' + a_{1}(x)y' + a_{0}(x)y = b(x)$
is given by
 $y_{p} = V_{1}y_{1} + V_{2}y_{2}$
where
 $V_{1} = \int \frac{-y_{2} \cdot b(x)}{W(y_{1}, y_{2})} dx$ and $V_{2} = \int \frac{y_{1} \cdot b(x)}{W(y_{1}, y_{2})} dx$

Step 1: To solve the homogeneous equation

$$y'' - 4y' + 4y = 0$$
 we have the
characteristic equation
 $r^2 - 4r + 4 = 0$
 $(r - 2)(r - 2) = 0$
So the homogeneous solution is
 $y_h = c_1 e^{2x} + c_2 x e^{2x}$.
 $y_1 \qquad y_2$

Step 2: Now we use variation of parameters
With
$$y_1 = e^{2x}$$
 and $y_2 = xe^{2x}$.
We have $|e^{2x} + xe^{2x}|$
 $W(y_1, y_2) = |2e^{2x} + 2xe^{2x}|$

$$= e^{2x} \left(e^{2x} + 2x e^{2x} \right) - 2x e^{2x} e^{2x}$$

= $e^{4x} + 2x e^{4x} - 2x e^{4x}$
= e^{4x}

Thus,

$$V_{1} = \int \frac{-y_{2} \cdot b(x)}{W(y_{1}, y_{2})} dx = \int \frac{-xe^{2x} \cdot (x+1)e^{2x}}{e^{4x}} dx$$

$$= \int (-x^{2} - x) dx = -\frac{x^{3}}{3} - \frac{x^{2}}{2}$$

and

$$V_{2} = \int \frac{y_{1} \cdot b(x)}{W(y_{1}, y_{2})} dx = \int \frac{e^{2x} \cdot (x+1)e^{2x}}{e^{4x}} dx$$

$$= \int (x+1) dx = \frac{x^{2}}{2} + x$$

$$So,
y_{p} = V_{1}Y_{1} + V_{2}Y_{2}
= \left(-\frac{\chi^{3}}{3} - \frac{\chi^{2}}{2}\right)e^{2\chi} + \left(\frac{\chi^{2}}{2} + \chi\right)\chi e^{2\chi}
= \left(\frac{\chi^{3}}{6} + \frac{\chi^{2}}{2}\right)e^{2\chi}$$

Step 3: Thus the general solution to $y'' - 4y' + 4y = (x+1)e^{2x}$ is $y = y_{h} + y_{p}$ $= c_{1}e^{2x} + c_{2}xe^{2x} + (\frac{x^{3}}{6} + \frac{x^{2}}{2})e^{2x}$

$$\frac{E_{X:}}{y''+y} = tan(x)$$

Step 1: First we solve the homogeneous
equation
$$y'' + y = 0$$
 which has
characteristic equation
 $r^{2} + 1 = 0$
 $r = -0 \pm \sqrt{0^{2} - 4(1)(1)} = \pm \sqrt{-4} = \pm 2\sqrt{-1}$
 $z(1)$
 $= \pm \sqrt{-4} = \pm 2\sqrt{-1}$
 $z(1)$
 $= \pm \sqrt{-4} = \pm 2\sqrt{-1}$
 $z = \pm$

Step 2: Now we use variation of parameters with $y_1 = cos(x)$, $y_2 = sin(x)$.

We have

$$W(y_1, y_2) = \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix}$$

$$= \cos^2(x) - (-\sin^2(x))$$

$$= 1$$

Thus,

$$V_{1} = \int \frac{-y_{2} \cdot b(x)}{W(y_{1}, y_{2})} dx = \int \frac{-\sin(x) \cdot \tan(x)}{1} dx$$
$$= \int \frac{-\sin^{2}(x)}{\cos(x)} dx = \int \frac{(\cos^{2}(x) - 1)}{\cos(x)} dx$$
$$= \int \cos(x) dx - \int \sec(x) dx$$
$$= \int \sin(x) - \ln|\sec(x) + \tan(x)|$$

and

$$V_{z} = \int \frac{y_{1} \cdot b(x)}{W(y_{1}y_{2})} dx = \int \frac{\cos(x) + u_{n}(x)}{1} dx$$

$$= \int \cos(x) \cdot \frac{\sin(x)}{\cos(x)} dx = \int \sin(x) dx = -\cos(x)$$

Thus,

$$y_{p} = V_{1}y_{1} + V_{2}y_{2}$$

$$= \left[sin(x) - \ln |sec(x) + tan(x)| \right] \cdot cos(x)$$

$$- cos(x) \cdot sin(x)$$

$$= - cos(x) \cdot \ln |sec(x) + tan(x)|$$

$$Step 3: The general solution to$$

$$y'' + y = tan(x) \quad is \quad thus$$

$$y = y_{h} + y_{p}$$

$$= c_{1} \cdot cos(x) + c_{2} \cdot sin(x) - cos(x) \cdot \ln |sec(x) + tan(x)|$$

The following contains a theorem that we Used above. I put the Proof, but its mainly for me or fir those that hant to see why. It Uses some linear algebra results

Theorem: Let I be an interval. Let

$$a_i(x)$$
 and $a_2(x)$ be continuous on I.
Let y_i and y_2 be linearly independent
solutions to $y'' + a_i(x)y' + a_2(x) = 0$.
Then $W(y_i, y_2)(x) \neq 0$ for any x in I.
Proof: Let y_i and y_2 be (inearly
independent solutions to $y'' + a_i(x)y' + a_o(x)y = 0$.
independent solutions to $y'' + a_i(x)y' + a_o(x)y = 0$.
Suppose that we have xo in I with
 $W(y_i, y_2)(x_0) = 0$.
Then $\begin{pmatrix} y_i(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{pmatrix}$
Would not be invertible.
Thus there would exist constants $c_{ij}c_i$ not
both zero where
 $\begin{pmatrix} y_i(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{pmatrix} \begin{pmatrix} c_i \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Thus, we would get